Какую размерность имеет центробежный момент инерции сечения. Центробежные моменты инерции

Центробежный момент инерции относительно двух осей координат называется сумма произведений массы каждой из точек тела на координаты вдоль соответствующих осей.

Если тело имеет ось симметрии, то центробежный момент инерции тела равен нулю и оси у, х являются главными

17. Теорема Гюйгенса-Штейнера о вычислении моментов относительно параллельных осей .

Момент инерции твёрдого тела относительно оси не проходящей через центр масс равен сумме моментов инерции относительно центральной оси проходящей через центр масс и параллельной заданной и произведение массы тела на квадрат расстояния между осями.

JC - известный момент инерции относительно оси, проходящей через центр масс тела,

J - искомый момент инерции относительно параллельной оси,

m - масса тела,

d - расстояние между указанными осями.

18.Вычисление моментов инерции однородных тел: тонкая пластина, тонкий стержень, кольцо, цилиндр, конус.

Тонкий стержень: Тонкий цилиндр:

Тонкая пластина: Конус:

Тонкое кольцо: Шар:

Вычисление моментов инерции относительно произвольных осей.

Позволяет найти момент инерции относительно любой оси проходящей через оси координат и составляющие угля

С этими осями, через величины осевых и центробежных моментов инерции этих осей.

Эллипсоид инерции. Центральные оси инерции. Экстремальные свойства моментов инерции.

Центр эллипсоида находится в начале координат.

3 оси симметрии эллипсоида называются главными осями инерции, моменты инерции относительно главных осей называются главными моментами инерции.

Если в качестве осей координат принять главные оси инерции, то центробежные моменты инерции относительно этих осей будут равны нулю.

ЭЛЛИПСОИД ИНЕРЦИИ -поверхность, характеризующая распределение моментов инерции тела относительно пучка осей, проходящих через фиксированную точку О. Строится Э. и. как геом. место концов отрезков OK= 1/ , отложенных вдоль Ol от точки О, где Ol- любая ось, проходящая через точку О; Il - момент инерции тела относительно этой оси (рис.). Центр Э. и. совпадает с точкой О, а его ур-ние в произвольно проведённых координатных осях Oxyz имеет вид

где Ix, Iy, Iz - осевые, а Ixу, Iyz, Lzx - центробежные моменты инерции тела относительно указанных координатных осей. В свою очередь, зная Э. и. для точки О, можно найти момент инерции относительно любой оси Оl, проходящей через эту точку, из равенства Il= 1/R2, измерив в соот-ветдтвующих единицах расстояние R = OK.

Осевой момент инерции равен сумме произведений элементарных площадок на квадрат расстояния до соответствующей оси.

(8)

Знак всегда «+».

Не бывает равным 0.

Свойство: Принимает минимальное значение, когда точка пересечения координатных осей совпадает с центром тяжести сечения.

Осевой момент инерции сечения применяют при расчетах на прочность, жесткость и устойчивость.

1.3. Полярный момент инерции сечения Jρ

(9)

Взаимосвязь полярного и осевого моментов инерции:

(10)

(11)

Полярный момент инерции сечения равен сумме осевых моментов.

Свойство:

при повороте осей в любую сторону, один из осевых моментов инерции возрастает, а другой убывает (и наоборот). Сумма осевых моментов инерции остается величиной постоянной.

1.4. Центробежный момент инерции сечения Jxy

Центробежный момент инерции сечения равен сумме произведений элементарных площадок на расстояния до обеих осей

(12)

Единица измерения [см 4 ], [мм 4 ].

Знак «+» или «-».

, если координатные оси являются осями симметрии (пример – двутавр, прямоугольник, круг), или одна из координатных осей совпадает с осью симметрии (пример – швеллер).

Таким образом для симметричных фигур центробежный момент инерции равен 0.

Координатные оси u иv , проходящие через центр тяжести сечения, относительно которых центробежный момент равен нулю, называютсяглавными центральными осями инерции сечения. Главными они называются потому, что центробежный момент относительно них равен нулю, а центральными – потому, что проходят через центр тяжести сечения.

У сечений, не обладающих симметрией относительно осей x илиy , например у уголка,не будет равен нулю. Для этих сечений определяют положение осейu иv с помощью вычисления угла поворота осейx иy

(13)

Центробежный момент относительно осей u иv -

Формула для определения осевых моментов инерции относительно главных центральных осей u иv :

(14)

где
- осевые моменты инерции относительно центральных осей,

- центробежный момент инерции относительно центральных осей.

1.5. Момент инерции относительно оси, параллельной центральной (теорема Штейнера)

Теорема Штейнера:

Момент инерции относительно оси, параллельной центральной, равен центральному осевому моменту инерции плюс произведение площади всей фигуры на квадрат расстояния между осями.

(15)

Доказательство теоремы Штейнера.

Согласно рис. 5 расстояние у до элементарной площадкиdF

Подставляя значение у в формулу, получим:

Слагаемое
, так как точка С является центром тяжести сечения (см. свойство статических моментов площади сечения относительно центральных осей).

Для прямоугольника высотой h и шириной b :

Осевой момент инерции:

Момент сопротивления изгибу:

момент сопротивления изгибу равен отношению момента инерции к расстоянию наиболее удаленного волокна от нейтральной линии:

т.к.
, то

Для круга:

Полярный момент инерции:

Осевой момент инерции:

Момент сопротивления кручению:

Т.к.
, то

Момент сопротивления изгибу:

Пример 2. Определить момент инерции прямоугольного сечения относительно центральной оси С x .

Решение. Разобьём площадь прямоугольника на элементарные прямоугольники с размерами b (ширина) иdy (высота). Тогда площадь такого прямоугольника (на рис. 6 заштрихована) равна dF =bdy . Вычислим значение осевого момента инерции J x

По аналогии запишем

- осевой момент инерции сечения относительно центральной

Центробежный момент инерции

, так как оси С x и Сy являются осями симметрии.

Пример 3. Определить полярный момент инерции круглого сечения.

Решение. Разобьём круг на бесконечно тонкие кольца толщиной
радиусом, площадь такого кольца
. Подставляя значение
в выражение для полярного момента инерции интегрируя, получим

Учитывая равенство осевых моментов круглого сечения
и

, получаем

Осевые моменты инерции для кольца равны

с – отношение диаметра выреза к наружному диаметру вала.

Лекция №2 «Главные оси и главные моменты инерции

Рассмотрим, как изменяются моменты инерции при повороте координатных осей. Положим, даны моменты инерции некоторого сечения относительно осей 0х , 0у (не обязательно центральных)- ,- осевые моменты инерции сечения. Требуется определить,- осевые моменты относительно осейu ,v , повёрнутых относительно первой системы на угол
(рис. 8)

Так как проекция ломаной линии ОАВС равна проекции замыкающей, находим:

(15)

Исключим uиvв выражениях моментов инерции:



(18)

Рассмотрим два первых уравнения. Складывая их почленно, получим

Таким образом, сумма осевых моментов инерции относительно двух взаимно перпендикулярных осей не зависит от угла
и при повороте осей остается постоянной. Заметим при этом, что

Где - расстояние от начала координат до элементарной площадки (см. рис.5). Таким образом

Где - уже знакомый нам полярный момент инерции:

Определим осевой момент инерции круга относительно диаметра.

Так как в силу симметрии
но, как известно,

Следовательно, для круга

С изменением угла поворота осей
значения моментов именяются, но сумма остается неизменной. Следовательно существует такое значение
, при котором один из моментов инерции достигает своего максимального значения, в то время как другой момент принимает минимальное значение. Дифференцируя выражениепо углу
и приравнивая производную к нулю, находим

(19)

При этом значении угла
один из осевых моментов будет наибольшим, а другой - наименьшим. Одновременно центробежный момент инерции
обращается в нуль, что можно легко проверить, приравнивая к нулю формулу для центробежного момента инерции
.

Оси, относительно которых центробежный момент инерции равен нулю, а осевые моменты принимают экстремальные значения, называются главными осями. Если они к тому же являются центральными (точка начала координат совпадает с центром тяжести сечения), то тогда они называютсяглавными центральными осями (u ; v ). Осевые моменты инерции относительно главных осей называютсяглавными моментами инерции - и

И их значение определяется по следующей формуле:

(20)

Знак плюс соответствует максимальному моменту инерции, знак минус - минимальному.

Существует ещё одна геометрическая характеристика – радиус инерции сечения. Эта величина часто используется в теоретических выводах и практических расчётах.

Радиусом инерции сечения относительно некоторой оси, например 0 x , называется величина , определяемая из равенства

(21)

F – площадь поперечного сечения,

- осевой момент инерции сечения,

Из определения следует, что радиус инерции равен расстоянию от оси 0х до той точки, в которой следует сосредоточить (условно) площадь сеченияF, чтобы момент инерции одной этой точки был равен моменту инерции всего сечения. Зная момент инерции сечения и его площадь, можно найти радиус инерции относительно оси 0х :

(22)

Радиусы инерции, соответствующие главным осям, называютсяглавными радиусами инерции и определяются по формулам


(23)

Лекция 3. Кручение стержней круглого поперечного сечения.

Всюду одинакова, то

J a = ρ ∫ (V) r 2 d V . {\displaystyle J_{a}=\rho \int \limits _{(V)}r^{2}dV.}

Теорема Гюйгенса - Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит от массы , формы и размеров тела, а также и от положения тела по отношению к этой оси. Согласно теореме Гюйгенса - Штейнера, момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела J c относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями :

J = J c + m d 2 , {\displaystyle J=J_{c}+md^{2},}

где m - полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

J = J c + m d 2 = 1 12 m l 2 + m (l 2) 2 = 1 3 m l 2 . {\displaystyle J=J_{c}+md^{2}={\frac {1}{12}}ml^{2}+m\left({\frac {l}{2}}\right)^{2}={\frac {1}{3}}ml^{2}.}

Осевые моменты инерции некоторых тел

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения
Тело Описание Положение оси a Момент инерции J a
Материальная точка массы m На расстоянии r от точки, неподвижная
Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра m r 2 {\displaystyle mr^{2}}
Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра 1 2 m r 2 {\displaystyle {\frac {1}{2}}mr^{2}}
Полый толстостенный цилиндр массы m с внешним радиусом r 2 и внутренним радиусом r 1 Ось цилиндра m r 2 2 + r 1 2 2 {\displaystyle m{\frac {r_{2}^{2}+r_{1}^{2}}{2}}}
Сплошной цилиндр длины l , радиуса r и массы m 1 4 m ⋅ r 2 + 1 12 m ⋅ l 2 {\displaystyle {1 \over 4}m\cdot r^{2}+{1 \over 12}m\cdot l^{2}}
Полый тонкостенный цилиндр (кольцо) длины l , радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс 1 2 m ⋅ r 2 + 1 12 m ⋅ l 2 {\displaystyle {1 \over 2}m\cdot r^{2}+{1 \over 12}m\cdot l^{2}}
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс 1 12 m l 2 {\displaystyle {\frac {1}{12}}ml^{2}}
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец 1 3 m l 2 {\displaystyle {\frac {1}{3}}ml^{2}}
Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы 2 3 m r 2 {\displaystyle {\frac {2}{3}}mr^{2}}
Шар радиуса r и массы m Ось проходит через центр шара 2 5 m r 2 {\displaystyle {\frac {2}{5}}mr^{2}}
Конус радиуса r и массы m Ось конуса 3 10 m r 2 {\displaystyle {\frac {3}{10}}mr^{2}}
Равнобедренный треугольник с высотой h , основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину 1 24 m (a 2 + 12 h 2) {\displaystyle {\frac {1}{24}}m(a^{2}+12h^{2})}
Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс 1 12 m a 2 {\displaystyle {\frac {1}{12}}ma^{2}}
Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс 1 6 m a 2 {\displaystyle {\frac {1}{6}}ma^{2}}
Прямоугольник со сторонами a и b и массой m Ось перпендикулярна плоскости прямоугольника и проходит через центр масс 1 12 m (a 2 + b 2) {\displaystyle {\frac {1}{12}}m(a^{2}+b^{2})}
Правильный n-угольник радиуса r и массой m Ось перпендикулярна плоскости и проходит через центр масс m r 2 6 [ 1 + 2 cos ⁡ (π / n) 2 ] {\displaystyle {\frac {mr^{2}}{6}}\left}
Тор (полый) с радиусом направляющей окружности R , радиусом образующей окружности r и массой m Ось перпендикулярна плоскости направляющей окружности тора и проходит через центр масс I = m (3 4 r 2 + R 2) {\displaystyle I=m\left({\frac {3}{4}}\,r^{2}+R^{2}\right)}

Вывод формул

Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобьём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJ i . Тогда

J = ∑ d J i = ∑ R i 2 d m . (1) . {\displaystyle J=\sum dJ_{i}=\sum R_{i}^{2}dm.\qquad (1).}

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

J = ∑ R 2 d m = R 2 ∑ d m = m R 2 . {\displaystyle J=\sum R^{2}dm=R^{2}\sum dm=mR^{2}.}

Толстостенный цилиндр (кольцо, обруч)

Вывод формулы

Пусть имеется однородное кольцо с внешним радиусом R , внутренним радиусом R 1 , толщиной h и плотностью ρ . Разобьём его на тонкие кольца толщиной dr . Масса и момент инерции тонкого кольца радиуса r составит

d m = ρ d V = ρ ⋅ 2 π r h d r ; d J = r 2 d m = 2 π ρ h r 3 d r . {\displaystyle dm=\rho dV=\rho \cdot 2\pi rhdr;\qquad dJ=r^{2}dm=2\pi \rho hr^{3}dr.}

Момент инерции толстого кольца найдём как интеграл

J = ∫ R 1 R d J = 2 π ρ h ∫ R 1 R r 3 d r = {\displaystyle J=\int _{R_{1}}^{R}dJ=2\pi \rho h\int _{R_{1}}^{R}r^{3}dr=} = 2 π ρ h r 4 4 | R 1 R = 1 2 π ρ h (R 4 − R 1 4) = 1 2 π ρ h (R 2 − R 1 2) (R 2 + R 1 2) . {\displaystyle =2\pi \rho h\left.{\frac {r^{4}}{4}}\right|_{R_{1}}^{R}={\frac {1}{2}}\pi \rho h\left(R^{4}-R_{1}^{4}\right)={\frac {1}{2}}\pi \rho h\left(R^{2}-R_{1}^{2}\right)\left(R^{2}+R_{1}^{2}\right).}

Поскольку объём и масса кольца равны

V = π (R 2 − R 1 2) h ; m = ρ V = π ρ (R 2 − R 1 2) h , {\displaystyle V=\pi \left(R^{2}-R_{1}^{2}\right)h;\qquad m=\rho V=\pi \rho \left(R^{2}-R_{1}^{2}\right)h,}

получаем окончательную формулу для момента инерции кольца

J = 1 2 m (R 2 + R 1 2) . {\displaystyle J={\frac {1}{2}}m\left(R^{2}+R_{1}^{2}\right).}

Однородный диск (сплошной цилиндр)

Вывод формулы

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R 1 = 0 ), получим формулу для момента инерции цилиндра (диска):

J = 1 2 m R 2 . {\displaystyle J={\frac {1}{2}}mR^{2}.}

Сплошной конус

Вывод формулы

Разобьём конус на тонкие диски толщиной dh , перпендикулярные оси конуса. Радиус такого диска равен

r = R h H , {\displaystyle r={\frac {Rh}{H}},}

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска. Масса и момент инерции такого диска составят

d J = 1 2 r 2 d m = 1 2 π ρ r 4 d h = 1 2 π ρ (R h H) 4 d h ; {\displaystyle dJ={\frac {1}{2}}r^{2}dm={\frac {1}{2}}\pi \rho r^{4}dh={\frac {1}{2}}\pi \rho \left({\frac {Rh}{H}}\right)^{4}dh;}

Интегрируя, получим

J = ∫ 0 H d J = 1 2 π ρ (R H) 4 ∫ 0 H h 4 d h = 1 2 π ρ (R H) 4 h 5 5 | 0 H == 1 10 π ρ R 4 H = (ρ ⋅ 1 3 π R 2 H) 3 10 R 2 = 3 10 m R 2 . {\displaystyle {\begin{aligned}J=\int _{0}^{H}dJ={\frac {1}{2}}\pi \rho \left({\frac {R}{H}}\right)^{4}\int _{0}^{H}h^{4}dh={\frac {1}{2}}\pi \rho \left({\frac {R}{H}}\right)^{4}\left.{\frac {h^{5}}{5}}\right|_{0}^{H}=={\frac {1}{10}}\pi \rho R^{4}H=\left(\rho \cdot {\frac {1}{3}}\pi R^{2}H\right){\frac {3}{10}}R^{2}={\frac {3}{10}}mR^{2}.\end{aligned}}}

Сплошной однородный шар

Вывод формулы

Разобьём шар на тонкие диски толщиной dh , перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

r = R 2 − h 2 . {\displaystyle r={\sqrt {R^{2}-h^{2}}}.}

Масса и момент инерции такого диска составят

d m = ρ d V = ρ ⋅ π r 2 d h ; {\displaystyle dm=\rho dV=\rho \cdot \pi r^{2}dh;} d J = 1 2 r 2 d m = 1 2 π ρ r 4 d h = 1 2 π ρ (R 2 − h 2) 2 d h = 1 2 π ρ (R 4 − 2 R 2 h 2 + h 4) d h . {\displaystyle dJ={\frac {1}{2}}r^{2}dm={\frac {1}{2}}\pi \rho r^{4}dh={\frac {1}{2}}\pi \rho \left(R^{2}-h^{2}\right)^{2}dh={\frac {1}{2}}\pi \rho \left(R^{4}-2R^{2}h^{2}+h^{4}\right)dh.}

Момент инерции шара найдём интегрированием:

J = ∫ − R R d J = 2 ∫ 0 R d J = π ρ ∫ 0 R (R 4 − 2 R 2 h 2 + h 4) d h = = π ρ (R 4 h − 2 3 R 2 h 3 + 1 5 h 5) | 0 R = π ρ (R 5 − 2 3 R 5 + 1 5 R 5) = 8 15 π ρ R 5 = = (4 3 π R 3 ρ) ⋅ 2 5 R 2 = 2 5 m R 2 . {\displaystyle {\begin{aligned}J&=\int _{-R}^{R}dJ=2\int _{0}^{R}dJ=\pi \rho \int _{0}^{R}\left(R^{4}-2R^{2}h^{2}+h^{4}\right)dh=\\&=\pi \rho \left.\left(R^{4}h-{\frac {2}{3}}R^{2}h^{3}+{\frac {1}{5}}h^{5}\right)\right|_{0}^{R}=\pi \rho \left(R^{5}-{\frac {2}{3}}R^{5}+{\frac {1}{5}}R^{5}\right)={\frac {8}{15}}\pi \rho R^{5}=\\&=\left({\frac {4}{3}}\pi R^{3}\rho \right)\cdot {\frac {2}{5}}R^{2}={\frac {2}{5}}mR^{2}.\end{aligned}}}

Тонкостенная сфера

Вывод формулы

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R :

J 0 = 2 5 M R 2 = 8 15 π ρ R 5 . {\displaystyle J_{0}={\frac {2}{5}}MR^{2}={\frac {8}{15}}\pi \rho R^{5}.}

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR .

J = d J 0 d R d R = d d R (8 15 π ρ R 5) d R = = 8 3 π ρ R 4 d R = (ρ ⋅ 4 π R 2 d R) 2 3 R 2 = 2 3 m R 2 . {\displaystyle {\begin{aligned}J&={\frac {dJ_{0}}{dR}}dR={\frac {d}{dR}}\left({\frac {8}{15}}\pi \rho R^{5}\right)dR=\\&={\frac {8}{3}}\pi \rho R^{4}dR=\left(\rho \cdot 4\pi R^{2}dR\right){\frac {2}{3}}R^{2}={\frac {2}{3}}mR^{2}.\end{aligned}}}

Тонкий стержень (ось проходит через центр)

Вывод формулы

Разобьём стержень на малые фрагменты длиной dr . Масса и момент инерции такого фрагмента равна

d m = m d r l ; d J = r 2 d m = m r 2 d r l . {\displaystyle dm={\frac {mdr}{l}};\qquad dJ=r^{2}dm={\frac {mr^{2}dr}{l}}.}

Интегрируя, получим

J = ∫ − l / 2 l / 2 d J = 2 ∫ 0 l / 2 d J = 2 m l ∫ 0 l / 2 r 2 d r = 2 m l r 3 3 | 0 l / 2 = 2 m l l 3 24 = 1 12 m l 2 . {\displaystyle J=\int _{-l/2}^{l/2}dJ=2\int _{0}^{l/2}dJ={\frac {2m}{l}}\int _{0}^{l/2}r^{2}dr={\frac {2m}{l}}\left.{\frac {r^{3}}{3}}\right|_{0}^{l/2}={\frac {2m}{l}}{\frac {l^{3}}{24}}={\frac {1}{12}}ml^{2}.}

Тонкий стержень (ось проходит через конец)

Вывод формулы

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l ⁄ 2 . По теореме Штейнера новый момент инерции будет равен

J = J 0 + m r 2 = J 0 + m (l 2) 2 = 1 12 m l 2 + 1 4 m l 2 = 1 3 m l 2 . {\displaystyle J=J_{0}+mr^{2}=J_{0}+m\left({\frac {l}{2}}\right)^{2}={\frac {1}{12}}ml^{2}+{\frac {1}{4}}ml^{2}={\frac {1}{3}}ml^{2}.}

Безразмерные моменты инерции планет и спутников

Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr 2 ). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение доплеровского смещения радиосигнала, передаваемого АМС , пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара - 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра .

Центробежный момент инерции

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины :

J x y = ∫ (m) x y d m = ∫ (V) x y ρ d V , {\displaystyle J_{xy}=\int \limits _{(m)}xydm=\int \limits _{(V)}xy\rho dV,} J x z = ∫ (m) x z d m = ∫ (V) x z ρ d V , {\displaystyle J_{xz}=\int \limits _{(m)}xzdm=\int \limits _{(V)}xz\rho dV,} J y z = ∫ (m) y z d m = ∫ (V) y z ρ d V , {\displaystyle J_{yz}=\int \limits _{(m)}yzdm=\int \limits _{(V)}yz\rho dV,}

где x , y и z - координаты малого элемента тела объёмом dV , плотностью ρ и массой dm .

Ось OX называется главной осью инерции тела , если центробежные моменты инерции J xy и J xz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции данного тела .

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела , а моменты инерции относительно этих осей - его главными центральными моментами инерции . Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции .

Геометрические моменты инерции

Геометрический момент инерции объёма

J V a = ∫ (V) r 2 d V , {\displaystyle J_{Va}=\int \limits _{(V)}r^{2}dV,}

где, как и ранее r - расстояние от элемента dV до оси a .

Геометрический момент инерции площади относительно оси - геометрическая характеристика тела, выражаемая формулой :

J S a = ∫ (S) r 2 d S , {\displaystyle J_{Sa}=\int \limits _{(S)}r^{2}dS,}

где интегрирование выполняется по поверхности S , а dS - элемент этой поверхности.

Размерность J Sa - длина в четвёртой степени ( d i m J S a = L 4 {\displaystyle \mathrm {dim} J_{Sa}=\mathrm {L^{4}} } ), соответственно единица измерения СИ - 4 . В строительных расчетах, литературе и сортаментах металлопроката часто указывается в см 4 .

Через геометрический момент инерции площади выражается момент сопротивления сечения :

W = J S a r m a x . {\displaystyle W={\frac {J_{Sa}}{r_{max}}}.}

Здесь r max - максимальное расстояние от поверхности до оси.

Геометрические моменты инерции площади некоторых фигур
Прямоугольника высотой h {\displaystyle h} и шириной b {\displaystyle b} : J y = b h 3 12 {\displaystyle J_{y}={\frac {bh^{3}}{12}}}

J z = h b 3 12 {\displaystyle J_{z}={\frac {hb^{3}}{12}}}

Прямоугольного коробчатого сечения высотой и шириной по внешним контурам H {\displaystyle H} и B {\displaystyle B} , а по внутренним h {\displaystyle h} и b {\displaystyle b} соответственно J z = B H 3 12 − b h 3 12 = 1 12 (B H 3 − b h 3) {\displaystyle J_{z}={\frac {BH^{3}}{12}}-{\frac {bh^{3}}{12}}={\frac {1}{12}}(BH^{3}-bh^{3})}

J y = H B 3 12 − h b 3 12 = 1 12 (H B 3 − h b 3) {\displaystyle J_{y}={\frac {HB^{3}}{12}}-{\frac {hb^{3}}{12}}={\frac {1}{12}}(HB^{3}-hb^{3})}

Круга диаметром d {\displaystyle d} J y = J z = π d 4 64 {\displaystyle J_{y}=J_{z}={\frac {\pi d^{4}}{64}}}

Момент инерции относительно плоскости

Моментом инерции твёрдого тела относительно некоторой плоскости называют скалярную величину, равную сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до рассматриваемой плоскости .

Если через произвольную точку O {\displaystyle O} провести координатные оси x , y , z {\displaystyle x,y,z} , то моменты инерции относительно координатных плоскостей x O y {\displaystyle xOy} , y O z {\displaystyle yOz} и z O x {\displaystyle zOx} будут выражаться формулами:

J x O y = ∑ i = 1 n m i z i 2 , {\displaystyle J_{xOy}=\sum _{i=1}^{n}m_{i}z_{i}^{2}\ ,} J y O z = ∑ i = 1 n m i x i 2 , {\displaystyle J_{yOz}=\sum _{i=1}^{n}m_{i}x_{i}^{2}\ ,} J z O x = ∑ i = 1 n m i y i 2 . {\displaystyle J_{zOx}=\sum _{i=1}^{n}m_{i}y_{i}^{2}\ .}

В случае сплошного тела суммирование заменяется интегрированием.

Центральный момент инерции

Центральный момент инерции (момент инерции относительно точки O, момент инерции относительно полюса, полярный момент инерции ) J O {\displaystyle J_{O}} - это величина, определяемая выражением :

J a = ∫ (m) r 2 d m = ∫ (V) ρ r 2 d V , {\displaystyle J_{a}=\int \limits _{(m)}r^{2}dm=\int \limits _{(V)}\rho r^{2}dV,}

Центральный момент инерции можно выразить через главные осевые моменты инерции, а также через моменты инерции относительно плоскостей :

J O = 1 2 (J x + J y + J z) , {\displaystyle J_{O}={\frac {1}{2}}\left(J_{x}+J_{y}+J_{z}\right),} J O = J x O y + J y O z + J x O z . {\displaystyle J_{O}=J_{xOy}+J_{yOz}+J_{xOz}.}

Тензор инерции и эллипсоид инерции

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором s → = ‖ s x , s y , s z ‖ T , | s → | = 1 {\displaystyle {\vec {s}}=\left\Vert s_{x},s_{y},s_{z}\right\Vert ^{T},\left\vert {\vec {s}}\right\vert =1} , можно представить в виде квадратичной (билинейной) формы :

I s = s → T ⋅ J ^ ⋅ s → , {\displaystyle I_{s}={\vec {s}}^{T}\cdot {\hat {J}}\cdot {\vec {s}},\qquad } (1)

где - тензор инерции . Матрица тензора инерции симметрична, имеет размеры 3 × 3 {\displaystyle 3\times 3} и состоит из компонент центробежных моментов:

J ^ = ‖ J x x − J x y − J x z − J y x J y y − J y z − J z x − J z y J z z ‖ , {\displaystyle {\hat {J}}=\left\Vert {\begin{array}{ccc}J_{xx}&-J_{xy}&-J_{xz}\\-J_{yx}&J_{yy}&-J_{yz}\\-J_{zx}&-J_{zy}&J_{zz}\end{array}}\right\Vert ,} J x y = J y x , J x z = J z x , J z y = J y z , {\displaystyle J_{xy}=J_{yx},\quad J_{xz}=J_{zx},\quad J_{zy}=J_{yz},\quad } J x x = ∫ (m) (y 2 + z 2) d m , J y y = ∫ (m) (x 2 + z 2) d m , J z z = ∫ (m) (x 2 + y 2) d m . {\displaystyle J_{xx}=\int \limits _{(m)}(y^{2}+z^{2})dm,\quad J_{yy}=\int \limits _{(m)}(x^{2}+z^{2})dm,\quad J_{zz}=\int \limits _{(m)}(x^{2}+y^{2})dm.}

Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора J ^ {\displaystyle {\hat {J}}} :

J ^ d = Q ^ T ⋅ J ^ ⋅ Q ^ , {\displaystyle {\hat {J}}_{d}={\hat {Q}}^{T}\cdot {\hat {J}}\cdot {\hat {Q}},} J ^ d = ‖ J X 0 0 0 J Y 0 0 0 J Z ‖ , {\displaystyle {\hat {J}}_{d}=\left\Vert {\begin{array}{ccc}J_{X}&0&0\\0&J_{Y}&0\\0&0&J_{Z}\end{array}}\right\Vert ,}

где Q ^ {\displaystyle {\hat {Q}}} - ортогональная матрица перехода в собственный базис тензора инерции. В собственном базисе координатные оси направлены вдоль главных осей тензора инерции, а также совпадают с главными полуосями эллипсоида тензора инерции. Величины J X , J Y , J Z {\displaystyle J_{X},J_{Y},J_{Z}} - главные моменты инерции. Выражение (1) в собственной системе координат имеет вид:

I s = J X ⋅ s x 2 + J Y ⋅ s y 2 + J Z ⋅ s z 2 , {\displaystyle I_{s}=J_{X}\cdot s_{x}^{2}+J_{Y}\cdot s_{y}^{2}+J_{Z}\cdot s_{z}^{2},}

откуда получается уравнение эллипсоида в собственных координатах. Разделив обе части уравнения на I s {\displaystyle I_{s}}

(s x I s) 2 ⋅ J X + (s y I s) 2 ⋅ J Y + (s z I s) 2 ⋅ J Z = 1 {\displaystyle \left({s_{x} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{X}+\left({s_{y} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{Y}+\left({s_{z} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{Z}=1}

и произведя замены:

ξ = s x I s , η = s y I s , ζ = s z I s , {\displaystyle \xi ={s_{x} \over {\sqrt {I_{s}}}},\eta ={s_{y} \over {\sqrt {I_{s}}}},\zeta ={s_{z} \over {\sqrt {I_{s}}}},}

получаем канонический вид уравнения эллипсоида в координатах ξ η ζ {\displaystyle \xi \eta \zeta } :

ξ 2 ⋅ J X + η 2 ⋅ J Y + ζ 2 ⋅ J Z = 1. {\displaystyle \xi ^{2}\cdot J_{X}+\eta ^{2}\cdot J_{Y}+\zeta ^{2}\cdot J_{Z}=1.}

Расстояние от центра эллипсоида до некоторой его точки связано со значением момента инерции тела вдоль прямой, проходящей через центр эллипсоида и эту точку:

r 2 = ξ 2 + η 2 + ζ 2 = (s x I s) 2 + (s y I s) 2 + (s z I s) 2 = 1 I s . {\displaystyle r^{2}=\xi ^{2}+\eta ^{2}+\zeta ^{2}=\left({s_{x} \over {\sqrt {I_{s}}}}\right)^{2}+\left({s_{y} \over {\sqrt {I_{s}}}}\right)^{2}+\left({s_{z} \over {\sqrt {I_{s}}}}\right)^{2}={1 \over I_{s}}.}

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ.

Как показывает опыт, сопротивление стержня различным деформациям зависит не только от размеров поперечного сечения, но и от формы.

Размеры поперечного сечения и форма характеризуются различными геометрическими характеристиками: площадь поперечного сечения, статические моменты, моменты инерции, моменты сопротивления и др.

1. Статический момент площади (момент инерции первой степени).

Статический моментом инерции площади относительно какой-либо оси, называется сумма произведений элементарных площадок на расстояние до этой оси, распространенная на всю площадь (рис. 1)


Рис.1

Свойства статического момента площади:

1. Статический момент площади измеряется в единицах длинны третьей степени (например, см 3).

2. Статический момент может быть меньше нуля, больше нуля и, следовательно, равняться нулю. Оси, относительно которых статический момент равен нулю, проходят через центр тяжести сечения и называются центральными осями.

Если x c иy c – координаты цента тяжести, то

3. Статический момент инерции сложного сечения относительно какой-либо оси равен сумме статических моментов составляющих простых сечений относительно той же оси.

Понятие статического момента инерции в науке о прочности используется для определения положения центра тяжести сечений, хотя надо помнить, что в симметричных сечениях центр тяжести лежит на пересечении осей симметрии.

2. Момент инерции плоских сечений (фигур) (моменты инерции второй степени).

а) осевой (экваториальный) момент инерции.

Осевым моментом инерции площади фигуры относительно какой-либо оси называется сумма произведений элементарных площадок на квадрат расстояния до этой оси распространения на всю площадь (рис. 1)

Свойства осевого момента инерции.

1. Осевой момент инерции площади измеряется в единицах длинны четвертой степени (например, см 4).

2. Осевой момент инерции всегда больше нуля.

3. Осевой момент инерции сложного сечения относительно какой-либо оси равен сумме осевых моментов составляющих простых сечений относительно той же оси:

4. Величина осевого момента инерции характеризует способность стержня (бруса) определенного поперечного сечения сопротивляться изгибу.

б) Полярный момент инерции .

Полярным моментом инерции площади фигуры относительно какого-либо полюса называется сумма произведений элементарных площадок на квадрат расстояния до полюса, распространенная на всю площадь (рис. 1).

Свойства полярного момента инерции:

1. Полярный момент инерции площади измеряется в единицах длины четвертой степени (например, см 4).

2. Полярный момент инерции всегда больше нуля.

3. Полярный момент инерции сложного сечения относительно какого-либо полюса (центра) равен сумме полярных моментов составляющих простых сечений относительно этого полюса.

4. Полярный момент инерции сечения равен сумме осевых моментов инерции этого сечения относительно двух взаимно перпендикулярных осей, проходящих через полюс.

5. Величина полярного момента инерции характеризует способность стержня (бруса) определенной формы поперечного сечения сопротивляться кручению.

в) Центробежный момент инерции.

ЦЕНТРОБЕЖНЫМ МОМЕНТОМ ИНЕРЦИИ площади фигуры относительно какой-либо системы координат называется сумма произведений элементарных площадок на координаты, распространенная на всю площадь (рис. 1)

Свойства центробежного момента инерции:

1. Центробежный момент инерции площади измеряется в единицах длинны четвертой степени (например, см 4).

2. Центробежный момент инерции может быть больше нуля, меньше нуля, и равняться нулю. Оси, относительно которых центробежный момент инерции равен нулю, называются главными осями инерции. Две взаимно перпендикулярные оси, из которых хотя бы одна является осью симметрии, будут главными осями. Главные оси, проходящие через центр тяжести площади, называются главными центральными осями, а осевые моменты инерции площади – главными центральными моментами инерции.

3. Центробежный момент инерции сложного сечения в какой-либо системе координат равен сумме центробежных моментов инерции составляющих фигур в той же схеме координат.

МОМЕНТЫ ИНЕРЦИИ ОТНОСИТЕЛЬНО ПАРАЛЛЕЛЬНЫХ ОСЕЙ.


Рис.2

Дано: оси x, y – центральные;

т.е. осевой момент инерции в сечении относительно оси, параллельной центральной, равен осевому моменту относительно своей центральной оси плюс произведение площади на квадрат расстояния между осями. Отсюда следует, что осевой момент инерции сечения относительно центральной оси имеет минимальную величину в системе параллельных осей.

Сделав аналогичные выкладки для центробежного момента инерции, получим:

J x1y1 =J xy +Aab

т.е. центробежный момент инерции сечения относительно осей, параллельных центральной системе координат, равен центробежному моменту в центральной системе координат плюс произведение площади на расстояние между осями.

МОМЕНТЫ ИНЕРЦИИ В ПОВЕРНУТОЙ СИСТЕМЕ КООРДИНАТ

т.е. сумма осевых моментов инерции сечения есть величина постоянная, не зависит от угла поворота осей координат и равна полярному моменту инерции относительно начала координат. Центробежный момент инерции может менять свою величину и обращаться в «0».

Оси, относительно которых центробежный момент равен нулю будут главными осями инерции, а если они проходят через центр тяжести, то они называются главными осями инерции и обозначаются «u» и «».

Моменты инерции относительно главных центральных осей называются главными центральными моментами инерции и обозначаются , причем главные центральные моменты инерции имеют экстремальные значения, т.е. один «min», а другой «max».

Пусть угол «a 0 » характеризует положение главных осей, тогда:

по этой зависимости определяем положение главных осей. Величину же главных моментов инерции после некоторых преобразований, определяем по следующей зависимости:

ПРИМЕРЫ ОПРЕДЕЛЕНИЯ ОСЕВЫХ МОМЕНТОВ ИНЕРЦИИ, ПОЛЯРНЫХ МОМЕНТОВ ИНЕРЦИИ И МОМЕНТОВ СОПРОТИВЛЕНИЯ ПРОСТЕЙШИХ ФИГУР.

1. Прямоугольное сечение

Оси x и y – здесь и в других примерах – главные центральные оси инерции.

Определим осевые моменты сопротивления:

2. Круглое сплошное сечение. Моменты инерции.

Если m = 1, n = 1, тогда получим характеристику

которая называется центробежным моментом инерции .

Центробежный момент инерции относительно осей координат – сумма произведений элементарных площадей dA на их расстояния до этих осей, взятая по всей площади сечения А .

Если хотя бы одна из осей y или z является осью симметрии сечения, центробежный момент инерции такого сечения относительно этих осей равен нулю (так как в этом случае каждой положительной величине z·y·dA можем поставить в соответствие точно такую же, но отрицательную, по другую сторону от оси симметрии сечения, см. рисунок).

Рассмотрим дополнительные геометрические характеристики, которые могут быть получены из перечисленных основных и также часто используются в расчетах на прочность и жесткость.

Полярный момент инерции

Полярным моментом инерции J p называют характеристику

С другой стороны,

Полярный момент инерции (относительно данной точки) – сумма произведений элементарных площадей dA на квадраты их расстояний до этой точки, взятая по всей площади сечения А .

Размерность моментов инерции – м 4 в СИ.

Момент сопротивления

Момент сопротивления относительно некоторой оси – величина равная моменту инерции относительно той же оси отнесенному к расстоянию (y max или z max ) до наиболее удаленной от этой оси точки

Размерность моментов сопротивления – м 3 в СИ.

Радиус инерции

Радиусом инерции сечения относительно некоторой оси, называется величина, определяемая из соотношения:

Радиусы инерции выражаются в м в системе СИ.

Замечание: сечения элементов современных конструкций часто представляют собой некоторую композицию из материалов с разным сопротивлением упругим деформациям, характеризуемым, как известно из курса физики, модулем Юнга E . В самом общем случае неоднородного сечения модуль Юнга является непрерывной функцией координат точек сечения, т. е. E = E(z, y) . Поэтому жесткость неоднородного по упругим свойствам сечения характеризуется более сложными, чем геометрические характеристики однородного сечения, характеристиками, а именно упруго-геометрическими вида



2.2. Вычисление геометрических характеристик простых фигур

Прямоугольное сечение

Определим осевой момент инерции прямоугольника относительно оси z . Разобьем площадь прямоугольника на элементарные площадки с размерами b (ширина) и dy (высота). Тогда площадь такого элементарного прямоугольника (заштрихован) равна dA = b · dy . Подставляя значение dA в первую формулу, получим

По аналогии запишем осевой момент относительно оси у :

Осевые моменты сопротивления прямоугольника:

;

Подобным образом можно получить геометрические характеристики и для других простых фигур.

Круглое сечение

Сначала удобно найти полярный момент инерции J p .

Затем, учитывая, что для круга J z = J y , а J p = J z + J y , найдем J z = J y = J p / 2.

Разобьем круг на бесконечно малые кольца толщиной и радиусом ρ ; площадь такого кольца dA = 2 ∙ π ∙ ρ ∙ dρ . Подставляя выражение для dA в выражение для J p и интегрируя, получим

2.3. Вычисление моментов инерции относительно параллельных осей

z и y :

Требуется определить моменты инерции этого сечения относительно «новых» осей z 1 и y 1 , параллельных центральным и отстоящих от них на расстояние a и b соответственно:

Координаты любой точки в «новой» системе координат z 1 0 1 y 1 можно выразить через координаты в «старых» осях z и y так:

Так как оси z и y – центральные, то статический момент S z = 0.

Окончательно можем записать формулы «перехода» при параллельном переносе осей:

Отметим, что координаты a и b необходимо подставлять с учетом их знака (в системе координат z 1 0 1 y 1 ).

2.4. Вычисление моментов инерции при повороте координатных осей

Пусть известны моменты инерции произвольного сечения относительно центральных осей z, y :

; ;

Повернем оси z , y на угол α против часовой стрелки, считая угол поворота осей в этом направлении положительным.

Требуется определить моменты инерции относительно «новых» (повернутых) осей z 1 и y 1 :

Координаты элементарной площадки dA в «новой» системе координат z 1 0y 1 можно выразить через координаты в «старых» осях так:

Подставляем эти значения в формулы для моментов инерции в «новых» осях и интегрируем почленно:

Проделав аналогичные преобразования с остальными выражениями, запишем окончательно формулы «перехода» при повороте координатных осей:

Отметим, что если сложить два первых уравнения, то получим

т. е. полярный момент инерции есть величина инвариантная (другими словами, неизменная при повороте координатных осей).

2.5. Главные оси и главные моменты инерции

До сих пор рассматривались геометрические характеристики сечений в произвольной системе координат, однако наибольший практический интерес представляет система координат, в которой сечение описывается наименьшим количеством геометрических характеристик. Такая «особая» система координат задается положением главных осей сечения. Введем понятия: главные оси и главные моменты инерции .

Главные оси – две взаимно перпендикулярные оси, относительно которых центробежный момент инерции равен нулю, при этом осевые моменты инерции принимают экстремальные значения (максимум и минимум).

Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями .

Моменты инерции относительно главных осей называются главными моментами инерции.

Главные центральные оси принято обозначать буквами u и v ; главные моменты инерции – J u и J v (по определению J uv = 0).

Выведем выражения, позволяющие находить положение главных осей и величину главных моментов инерции. Зная, что J uv = 0, воспользуемся уравнением (2.3):

Угол α 0 определяет положение главных осей относительно любых центральных осей z и y . Угол α 0 откладывается между осью z и осью u и считается положительным в направлении против часовой стрелки.

Заметим, что если сечение имеет ось симметрии, то, в соответствии со свойством центробежного момента инерции (см. разд.2.1, п.4), такая ось всегда будет главной осью сечения.

Исключая угол α в выражениях (2.1) и (2.2) с помощью (2.4), получим формулы для определения главных осевых моментов инерции:

Запишем правило: ось максимум всегда составляет меньший угол с той из осей (z или y), относительно которой момент инерции имеет большее значение.

2.6. Рациональные формы поперечных сечений

Нормальные напряжения в произвольной точке поперечного сечения балки при прямом изгибе определяются по формуле:

, (2.5)

где М – изгибающий момент в рассматриваемом поперечном сечении; у – расстояние от рассматриваемой точки до главной центральной оси, перпендикулярной плоскости действия изгибающего момента; J x – главный центральный момент инерции сечения.

Наибольшие растягивающие и сжимающие нормальные напряжения в данном поперечном сечении возникают в точках, наиболее удаленных от нейтральной оси. Их определяют по формулам:

; ,

где у 1 и у 2 – расстояния от главной центральной оси Х до наиболее удаленных растянутого и сжатого волокон.

Для балок из пластичных материалов, когда [σ p ] = [σ c ] ([σ p ], [σ c ] – допускаемые напряжения для материала балки соответственно на растяжение и сжатие), применяют сечения, симметричные относительно центральной оси. В этом случае условие прочности имеет вид:

[σ], (2.6)

где W x = J x / y max – момент сопротивления площади поперечного сечения балки относительно главной центральной оси; y max = h / 2 (h – высота сечения); М max – наибольший по абсолютному значению изгибающий момент; [σ] – допускаемое напряжение материала на изгиб.

Кроме условия прочности балка должна удовлетворять и условию экономичности. Наиболее экономичными являются такие формы поперечных сечений, для которых с наименьшей затратой материала (или при наименьшей площади поперечного сечения) получается наибольшая величина момента сопротивления. Чтобы форма сечения была рациональной, необходимо, по возможности, распределять сечение подальше от главной центральной оси.

Например, двутавровая стандартная балка примерно в семь раз прочнее и в тридцать раз жестче, чем балка квадратного поперечного сечения той же площади сделанного из того же материала.

Необходимо иметь в виду, что при изменении положения сечения по отношению к действующей нагрузке прочность балки существенно изменяется, хотя площадь сечения остается неизменной. Следовательно, сечение надо располагать так, чтобы силовая линия совпадала с той из главных осей, относительно которых момент инерции минимален. Следует стремится, чтобы изгиб бруса проходил в плоскости его наибольшей жесткости.