Основы кинетики ферментативных реакций. От чего зависит активность ферментов? Зависимость скорости реакции от величины pH

Скорость ферментативной реакции

Мерой скорости ферментативной реакции служит количество субстрата, подвергшегося превращению в единицу времени, или количество образовавшегося продукта. Скорость определяют по углу наклона касательной к кривой на начальной стадии реакции.

Рис. 2 Скорость ферментативной реакции.

Чем круче наклон, тем больше скорость. Со временем скорость реакции обычно снижается, по большей части в результате снижения концентрации субстрата.

Факторы, влияющие на ферментативную активность

Действие Ф. зависит от ряда факторов: температуры, реакции среды (pH), концентрации фермента, концентрации субстрата, от присутствия специфических активаторов и неспецифических или специфических ингибиторов.

Концентрация фермента

При высокой концентрации субстрата и при постоянстве других факторов скорость ферментативной реакции пропорциональна концентрации фермента.

Рис. 3 Зависимость скорости ферментативной реакции от концентрации фермента.

Катализ осуществляется всегда в условиях, когда концентрация фермента гораздо ниже концентрации субстрата. Поэтому с возрастанием концентрации фермента растет и скорость ферментативной реакции.

Температура

Влияние температуры на скорость ферментативной реакции может быть выражено через температурный коэффициент Q 10: Q 10 = (скорость реакции при (х + 10)°C) / (скорость реакции при х °C)

В пределах 0-40°C Q 10 ферментативной реакции равен 2. Иными словами, при каждом повышении температуры на 10°C скорость ферментативной реакции удваивается.

Рис. 4 Влияние температуры на активность такого фермента, как амилаза слюны.

С повышением температуры движение молекул ускоряется, и у молекул реагирующих веществ больше шансов столкнуться друг с другом. Увеличивается, следовательно, и вероятность того, что реакция между ними произойдет. Температура, обеспечивающая наибольшую активность, называется оптимальной. За пределами этого уровня скорость ферментативной реакции снижается, несмотря на увеличение частоты столкновений. Происходит это вследствие разрушения вторичной и третичной структур фермента, иными словами, вследствие того, что фермент претерпевает денатурацию.

Рис. 5 Ход ферментативной реакции при разных температурах.

Когда температура приближается к точке замерзания или оказывается ниже ее, ферменты инактивируются, но денатурации при этом не происходит. С повышением температуры их каталитическая активность вновь восстанавливается.

Поскольку белки в сухом состоянии денатурируются значительно медленнее, чем белки оводненные (в виде белкового геля или раствора), инактивирование Ф. в сухом состоянии происходит гораздо медленнее, чем в присутствии влаги. Поэтому сухие споры бактерий или сухие семена могут выдержать нагревание до гораздо более высоких температур, чем те же споры или семена в увлажненном состоянии.

Концентрация субстрата

При данной концентрации фермента скорость ферментативной реакции возрастает с увеличением концентрации субстрата.

Рис. 6 Зависимость скорости ферментативной реакции от концентрации субстрата.

Теоретическая максимальная скорость реакции V max никогда не достигается, но наступает момент, когда дальнейшее увеличение концентрации субстрата уже не влечет за собой сколько-нибудь заметного изменения скорости реакции. Это следует объяснить тем, что при высоких концентрациях субстрата активные центры молекул Ф. в любой данный момент оказываются практически насыщенными. Таким образом, сколько бы ни было в наличии избыточного субстрата, он может соединиться с Ф. лишь после того, как образовавшийся ранее фермент-субстратный комплекс диссоциирует на продукт и свободный Ф. Поэтому при высоких концентрациях субстрата скорость ферментативной реакции лимитируется и концентрацией субстрата, и временем, которое требуется для диссоциации фермент-субстратного комплекса.

При постоянной температуре любой Ф. работает наиболее эффективно в узких пределах pH. Оптимальным считается то значение pH, при котором реакция протекает с максимальной скоростью.

Рис. 7 Зависимость активности фермента от pH.

При более высоких и более низких pH активность Ф. снижается. Сдвиг pH меняет заряд ионизированных кислотных и основных групп, от которого зависит специфичная форма молекул Ф. В результате изменяется форма молекул Ф., и в первую очередь форма его активного центра. При слишком резких сдвигах pH Ф. денатурирует. Свойственный данному Ф. оптимум pH не всегда совпадает с pH его непосредственного внутриклеточного окружения. Это позволяет предположить, что среда, в которой находится Ф., в какой-то мере регулирует его активность.

Кинетика ферментативных реакций. Этот раздел энзимологии изучает влияние хими ческих и физических факторов на скорость ферментативной реакции. В 1913 г. Михаэлис и Ментен создали теорию ферментативной кинетики, исходя из того, что фермент (Е) вступает во взаимодействие с субстратом (S) с образованием промежуточного ферментсубстратного комплекса (ЕS), который далее распадается на фермент и продукт реакции по уравнению:

Каждый этап взаимодействия субстрата с ферментом характеризуется своими константами скорости. Отношение суммы констант скорости распада ферментсубстратного комплекса к константе скорости образования ферментсубстратного комплекса называется константой Михаелиса (Кm). Она определят сродство фермента к субстрату. Чем ниже константа Михаелиса, тем выше сродство фермента к субстрату, тем выше скорость ка тализируемой им реакции. По величине Кm каталитические реакции можно поделить на быстрые (Кm 106 моль/л и меньше) и медленные (Кm 102 до 106).

Скорость ферментативной реакции зависит температуры, реакции среды, концентрации реагирующих веществ, количества фермента и других факторов.

1. Рассмотрим зависимость скорости реакции от количест ва фермента. При условии избытка субстрата скорость реакции пропорциональна количеству фермента, но при избыточном количестве фермента прирост скорости реакции будет сни жаться, поскольку уже не будет хватать субстрата.

2. Скорость химических реакций пропорциональна концентрации реагирующих ве ществ (закон действующих масс). Этот закон применим и для ферментативных реакций, но с определенными ограничениями. При постоян

ных количествах фермента скорость реакции действительно пропорциональна концентрации субстрата, но, только в области низких концен траций. При высоких концентрациях субстрата наступает насыщение фермента субстратом, то есть наступает такой момент, когда уже все мо лекулы фермента задействованы в каталитическом процессе и прироста скорости реакции не будет. Скорость реакции выходит на макси мальный уровень (Vmax) и дальше уже не зависит от концентрации субстрата. Зависимость скорости реакции от концентрации субстрата следует определять в той части кривой, кото рая ниже Vmax. Технически легче определить не максимальную скорость, а ½ Vmax. Этот параметр является главной характеристикой ферментативной реакции и дает возможность определить константу Михаелиса (Кm).

Кm (константа Михаэлиса) – это такая концентрация субстрата, при которой ско рость ферментативной реакции равна по ловине максимальной. Отсюда выводится уравнение Михаэлиса–Ментена скорости ферментативной реакции.

Ферментативная кинетика изучает влияние различных факторов (концентрация S и E, рН, температура, давление, ингибиторы и активаторы) на скорость ферментативных реакций. Главной целью изучения кинетики ферментативных реакций является получение информации, позволяющей глубже понять механизм действия ферментов.

Кинетическая кривая позволяет определить начальную скорость реакции V 0 .

Кривая субстратного насыщения.

Зависимость скорости реакции от концентрации фермента.

Зависимость скорости реакции от температуры.

Зависимость скорости реакции от рН.

Оптимум рН действия большинства ферментов лежит в пределах физиологических значений 6,0-8,0. Пепсин активен при рН 1,5-2,0, что соответствует кислотности желудочного сока. Аргиназа, специфичный фермент печени, активен при 10,0. Влияние рН среды на скорость ферментативной реакции связывают с состоянием и степенью ионизации ионогенных групп в молекуле фермента и субстрата. Этот фактор определяет конформацию белка, состояние активного центра и субстрата, формирование фермент-субстратного комплекса, собственно процесс катализа.

Математическое описание кривой субстратного насыщения, константа Михаэлиса .

Уравнение, описывающее кривую субстратного насыщения, было предложено Михаэлисом и Ментон и носит их имена (уравнение Михаэлиса-Ментен):

V = (V MAX *[ S ])/(Km +[ S ]) , где Km – константа Михаэлиса. Легко рассчитать, что при V = V MAX /2 Km = [S], т.е. Km – это концентрация субстрата, при которой скорость реакции составляет ½ V MAX .

С целью упрощения определения величины V MAX и Km уравнение Михаэлиса-Ментен можно пересчитать.

1/V = (Km+[S])/(V MAX *[S]),

1/V = Km/(V MAX *[S]) + 1/V MAX ,

1/ V = Km / V MAX *1/[ S ] + 1/ V MAX уравнение Лайнуивера-Берка. Уравнение, описывающее график Лайнуивера-Берка – это уравнение прямой линии (y = mx + c), где 1/V MAX – это отрезок, отсекаемый прямой на оси ординат; Km/V MAX - тангенс угла наклона прямой; пересечение прямой с осью абсцисс дает величину 1/Km. График Лайнуивера-Бэрка позволяет определить Km по относительно небольшому числу точек. Этот график также используют при оценке действия ингибиторов, о чем будет сказано ниже.

Значение Km изменяются в широких пределах: от 10 -6 моль/л для очень активных ферментов, до 10 -2 – для малоактивных ферментов.

Оценки Km имеют практическую ценность. При концентрациях субстрата в 100 раз превышающих Km, фермент будет работать практически с максимальной скоростью, поэтому максимальная скорость V MAX будет отражать количество присутствующего активного фермента. Это обстоятельство используют для оценки содержания фермента в препарате. Кроме того, Km является характеристикой фермента, что используется для диагностики энзимопатий.

Ингибирование активности ферментов.

Чрезвычайно характеристикой и важной особенностью ферментов является их инактивация под влиянием определенных ингибиторов.

Ингибиторы – это вещества, вызывающие частичное или полное торможение реакций, катализируемых ферментами.

Ингибирование ферментативной активности может быть необратимым или обратимым, конкурентным или неконкрентным.

Необратимое ингибирование – это стойкая инактивация фермента, возникающая в результате ковалентного связывания молекулы ингибитора в активном центре или в другом особом центре, изменяющим конформацию фермента. Диссоциация столь устойчивых комплексов с регенерацией свободного фермента практически исключена. Для преодоления последствий такого ингибирования организм должен синтезировать новые молекулы фермента.

Обратимое ингибирование – характеризуется равновесным комплексообразованием ингибитора с ферментом за счет нековалентных связей, вследствие чего такие комплексы способны к диссоциации с восстановлением активности фермента.

Классификация ингибиторов на конкурентные и неконкурентные основана на том, ослабляется (конкурентное ингибирование ) или не ослабляется (неконкурентное ингибирование ) их ингибирующие действие при повышении концентрации субстрата.

Конкурентные ингибиторы – это, как правило, соединения, структура которых сходна со структурой субстрата. Это позволяет им связываться в том же активном центре, что и субстраты, препятствуя взаимодействию фермента с субстратом уже на стадии связывания. После связывания ингибитор может быть превращен в некий продукт или остается в активном центре, пока не произойдет диссоциация.

Обратимое конкурентное ингибирование можно представить в виде схемы:

E↔ E-I → E + P 1

S (неакт)

Степень ингибирования фермента определяется соотношением концентраций субстрата и фермента.

Классическим примером подобного типа ингибирования является торможение активности сукцинатдегидрогеназы (СДГ) малатом, который вытесняет сукцинат из субстратного участка и препятствует его превращению в фумарат:

Ковалентное связывание ингибитора в активном центре приводит к инактивации фермента (необратимое ингибирование). Примером необратимого конкурентного ингибирования может служить инактивация триозофосфатизомеразы 3-хлорацетолфосфатом. Этот ингибитор является структурным аналогом субстрата – диоксиацетонфосфата и необратимо присоединяется к остатку глутаминовой кислоты в активном центре:

Некоторые ингибиторы действуют менее избирательно, взаимодействуя с определенной функциональной группой в составе активного центра разных ферментов. Так, связывание йодацетата или его амида с SH-группой аминокислоты цистеина, находящийся в активном центре фермента и принемающей участие в катализе, приводит к полной утрате активности фермента:

R-SH + JCH 2 COOH → HJ + R-S-CH 2 COOH

Поэтому эти ингибиторы инактивируют все ферменты, которые имеют SH-группы, участвующие в катализе.

Необратимое ингибирование гидролаз при действии нервно-паралитических газов (зарин, зоман) обусловлено их ковалентным связыванием с остатком серина в активном центре.

Метод конкурентного ингибирования нашел широкое применение в медицинской практике. Сульфаниламидные препараты – антагонисты п-аминобензойной кислоты, могут служить примером метаболизируемых конкурентных ингибиторов. Они связываются с дигидроптератсинтетазой – бактериальным ферментом, осуществляющим превращение п-аминобензоата в фолиевую кислоту, необходимую для роста бактерий. Бактерия погибает в результате того, что связавшийся сульфаниламид превращается в другое соединение и фолиевая кислота не образуется.

Неконкурентные ингибиторы обычно связываются с молекулой фермента в участке, отличном от места связывания субстрата, и субстрат непосредственно не конкурирует с ингибитором. Поскольку ингибитор и субстрат связываются с разными центрами возможно образование как комплекса E-I, так и комплекса S-E-I. Комплекс S-E-I тоже распадается с образованием продукта, однако с меньшей скоростью, чем E-S, поэтому реакция будет замедляться, но не остановится. Таким образом, могут протекать следующие параллельные реакции:

E↔ E-I ↔ S-E-I → E-I + P

Обратимое неконкурентное ингибирование встречается сравнительно редко.

Неконкурентные ингибиторы называют аллостерическими в отличие от конкурентных (изостерических ).

Обратимое ингибирование может быть количественно изучено на основе уравнения Михаэлиса-Ментен.

При конкурентном ингибировании V MAX остается постоянной, а Km возрастает.

При неконкурентном ингибировании снижается V MAX при неизменном Km.

Если продукт реакции ингибирует фермент, катализирующий его образование, такой способ ингибирования называется ретроингибированием или ингибированием по принципу обратной связи . Например, глюкоза тормозит глюкозо-6-фосфатазу, которая катализирует гидролиз глюкозо-6-фосфата.

Биологическое значение такого ингибирования – регуляция определенных метаболических путей (см. следующее занятие).

ПРАКТИЧЕСКАЯ ЧАСТЬ

Задание студентам

1. Изучить денатурацию белков под действием растворов минеральных и органических кислот и при нагревании.

2. Обнаружить кофермент НАД в дрожжах.

3. Определить амилазную активность в моче (сыворотке крови).

9. ЭТАЛОНЫ ОТВЕТОВ НА ЗАДАЧИ , тестовые вопросы, используемые при контроле знаний на занятии (можно в виде приложения)

10. ХАРАКТЕР И ОБЪЕМ ВОЗМОЖНОЙ УЧЕБНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЫ ПО ТЕМЕ

(Указать конкретно характер и форму УИРС: подготовка реферативных выступлений, проведение самостоятельных исследований, имитационная игра, оформление истории болезни с использованием монографической литературы и др. формы)

Ферментативная кинетика изучает скорость реакций, катализируемых ферментами в зависимости от различных условий (концентрации, температуры, pH и др.) их взаимодействия с субстратом.

Однако ферменты - это белки, чувствительные к влиянию различных внешних воздействий. Поэтому при изучении скорости ферментативных реакций учитывают, главным образом, концентрации реагирующих веществ, а влияние температуры, pH среды, активаторов, ингибиторов и прочих факторов стараются свести к минимуму и создают стандартные условия. Во-первых, это оптимальное для данного фермента значение pH среды. Во-вторых, рекомендуется придерживаться температуры 25°С, в тех случаях, где это возможно. В-третьих, достигают полного насыщения фермента субстратом. Этот момент особенно важен, поскольку при низкой концентрации субстрата не все молекулы фермента участуют в реакции (рис. 6.5, а ), значит и результат будет далек от максимально возможного. Наибольшая мощность катализируемой реакции, при прочих равных условиях, достигается, если каждая молекула фермента участвует в превращении, т.е. при высокой концентрации фермент-субстратного комплекса (рис. 6.5, в). Если же концентрация субстрата не обеспечивает полного насыщения фермента (рис. 6.5, б ), то скорость протекающей реакции не достигает максимального значения.

Рис. 65.

а - при низкой концентрации субстрата; 6 - при недостаточной концентрации субстрата; в - при полном насыщении фермента субстратом

Скорость ферментативной реакции, измеренной при соблюдении перечисленных условий, и полном насыщении фермента субстратом называют максимальной скоростью ферментативной реакции (V).

Скорость ферментативной реакции, определяемая при неполном насыщении фермента субстратом, обозначается v.

Ферментативный катализ упрощенно можно описать схемой

где F - фермент; S - субстрат; FS - фермент-субстратный комплекс.

Каждая стадия этого процесса характеризуется определенной скоростью. Единицей измерения скорости ферментативной реакции служит количество молей субстрата, превращаемое в единицу времени (как и скорость обычной реакции).

Взаимодействие фермента с субстратом приводит к образованию фермент-субстратного комплекса, но этот процесс обратимый. Скорости прямой и обратной реакций зависят от концентраций реагирующих веществ и описываются соответствующими уравнениями:

В состоянии равновесия справедливо уравнение (6.3), поскольку скорости прямой и обратной реакции равны.

Подставив значения скорости прямой (6.1) и обратной (6.2) реакции в уравнение (6.3), получим равенство:

Состояние равновесия характеризуется соответствующей константой равновесия К р, равной отношению констант прямой и обратной реакций (6.5). Величина, обратная константе равновесия, называется субстратной константой K s , или константой диссоциации фермент-субстратного комплекса:


Из уравнения (6.6) ясно, что субстратная константа уменьшается при высокой концентрации фермент-субстратного комплекса, т.е. при большой его устойчивости. Следовательно, субстратная константа характеризует сродство фермента и субстрата и соотношение констант скоростей образования и диссоциации фермент-субстратного комплекса.

Явление насыщения фермента субстратом изучали Леонор Михаэлис и Мод Мептен. На основе математической обработки результатов ими было выведено уравнение (6.7), получившее их имена, из которого ясно, что при высокой концентрации субстрата и низком значении субстратной константы скорость ферментативной реакции стремится к максимальной. Однако это уравнение носит ограниченный характер, поскольку учитывает не все параметры:

Фермент-субстратный комплекс в процессе реакции может подвергаться превращениям в разных направлениях:

  • диссоциировать на исходные вещества;
  • превращаться в продукт, от которого отделяется фермент в неизменном виде.

Поэтому для описания суммарного действия ферментативного процесса введено понятие константы Михаэлиса К т, которая выражает взаимосвязь констант скоростей всех трех реакций ферментативного катализа (6.8). Если оба слагаемых разделить на константу скорости реакции образования фермент-субстратного комплекса, то получится выражение (6.9):


Из уравнения (6.9) вытекает важное следствие: константа Михаэлиса всегда больше субстратной константы на величину k 2 /k v

Численно К т равна такой концентрация субстрата, при которой скорость реакции составляет половину максимально возможной скорости и соответствует такому насыщению фермента субстратом, как на рис. 6.5, б. Поскольку на практике не всегда удается достичь полного насыщения фермента субстратом, то именно К т используется для сравнительной характеристики кинетических характеристик ферментов.

Скорость ферментативной реакции при неполном насыщении фермента субстратом (6.10) зависит от концентрации фермент-субстратного комплекса. Коэффициентом пропорциональности служит константа реакции освобождения фермента и продукта, поскольку при этом меняется концентрация фермент-субстратного комплекса:

После преобразований, с учетом представленных выше зависимостей, скорость ферментативной реакции при неполном насыщении фермента субстратом описывается уравнением (6.11), т.е. зависит от концентраций фермента, субстрата и их сродства K s:

Графическая зависимость скорости ферментативной реакции от концентрации субстрата не является линейной. Как очевидно из рис. 6.6, с увеличением концентрации субстрата наблюдается рост активности фермента. Однако при достижении максимального насыщения фермента субстратом скорость ферментативной реакции становится максимальной. Следовательно, фактором, ограничивающим скорость реакции, является образование фермент-субстратного комплекса.

Практика показала, что концентрации субстратов, как правило, выражаются значениями намного меньше единицы (10 6 -10 3 моль). Оперировать такими величинами в расчетах довольно сложно. Поэтому Г. Лайнуивер и Д. Берк предложили выражать графическую зависимость скорости ферментативной реакции не в прямых координатах, а в обратных. Они исходили из предположения, что для равных величин равны и обратные им значения:

Рис. 6.6.

После преобразования выражения (6.13) получается выражение, называемое уравнением Лайнуивера - Бэрка (6.14):

Графическая зависимость уравнения Лайнуивера- Берка носит линейный характер (рис. 6.7). Кинетические характеристики фермента определяются следующим образом:

  • отрезок, отсекаемый на оси ординат, равен 1/V;
  • отрезок, отсекаемый на оси абсцисс, равен -1 /К т.

Рис. 6.7.

Считается, что метод Лайнуивера - Берка позволяет более точно, чем в прямых координатах, определить максимальную скорость реакции. Из этого графика можно также извлечь ценную информацию, касающуюся ингибирования фермента.

Существуют и другие способы преобразования уравнения Михаэлиса- Ментен. Графические зависимости используют при изучении влияния различных внешних воздействий на ферментативный процесс.

Скорость ферментативных реакций зависит от концентрации суб-

страта. Эта зависимость носит сложный характер, который для определенных ферментов описывается параболической кривой (рис. 29).

Рисунок 29 – Зависимость скорости ферментативной реакции

от концентрации субстрата

Параболический характер зависимости объясняется тем, что при взаимодействии фермента с субстратом происходит образование фермент-субстратного комплекса. Первоначально при увеличении концентрации субстрата происходит возрастание концентрации фермент-субстратных комплексов в реакционной смеси, что проявляется в параллельном повышении скорости реакции. При определенной концентрации субстрата (насыщающей) возникает своеобразное “насышение” всех активных центров молекул ферментов в реакционной смеси. Скорость ферментативной реакции при насыщающей концентрации становится максимальной. При дальнейшем повышении содержания субстрата в реакционной смеси она не изменяется.

Из графика зависимости скорости ферментативной реакции от концентрации субстрата вычисляются два важных показателя:

1. Максимальная скорость реакции (V max). Она определяется как скорость реакции при насыщающей концентрации субстрата. Величина макси-мальной скорости отражает каталитическую мощность фермента. Ферменты, обладающие большей величиной V max , являются более мощными катализаторами. В единицу времени они катализируют превращение большего количества молекул субстрата. Величина максимальной скорос-ти выражается числом оборотов фермента. Число оборотов оценивается количеством молекул субстрата, превращаемых ферментом в единицу времени (с -1). Для большинства ферментов число оборотов находится в пределах 10 4 . В тоже время существуют ферменты, для которых число оборотов значительно больше (600000 – для карбангидразы) или меньше этой величины (100 – для химотрипсина).

2. Константа Михаэлиса (К м). Константа Михаэлиса представляет собой концентрацию субстрата, при которой скорость реакции составляет половину максимальной. Величина К м отражает сродство фермента к суб-страту. Чем больше эта величина, тем меньшее сродство к субстрату имеет фермент. К м выражается в молях субстрата. Так, величина К м по отношению к глюкозе у фермента глюкокиназы составляет 10 ммоль, а для гексокиназы – 0,01 ммоль. Гексокиназа проявляет большее сродство к глюкозе, чем глюкокиназа, при одинаковой концентрации субстрата она с большей скоростью катализирует фосфорилирование глюкозы.



На основании математического анализа кривой зависимости скорости ферментативной реакции от концентрации субстрата Л. Михаэлисом и М. Ментен (1913) была выведена формула, позволяющая оценить взаимоотношение между скоростью реакции, максимальной скоростью и константой Михаэлиса. В настоящее время она определяется как уравнение Михаэлиса – Ментен.

V o = V max [S ]/K м + [S ],

где V o – скорость реакции, S – концентрация субстрата.

Общие свойства ферментов

Несмотря на существование определенных различий в строении, функции и внутриклеточной локализации, для ферментов характерен целый ряд общих свойств. К таковым относятся зависимость проявления их каталитической активности от температуры (термолабильность) и рН среды, а также субстратная специфичность.

Характерным свойством ферментов является термолабильность . Это явление может быть проиллюстрировано графиком зависимости скорости ферментативной реакции от температуры реакционной смеси (рис. 30).

Рисунок 30 – Зависимость скорости ферментативной реакции от температуры

реакционной среды (t опт – оптимальная температура; V – скорость реакции)



Как видно из представленного графика при температуре, близкой к 4 о С ферментативные реакции практически не идут. По этой причине биологические объекты могут определенное время храниться перед проведением биохимических исследований на холоде. Именно холод позволяет сохранять пищевые продукты от аутолиза (самопереваривания).

Повышение температуры сопровождается повышением скорости ферментативной реакции. Причиной этого является повышение кинетичес-кой энергии молекул субстрата и фермента, способствующее повышению скорости взаимодействия между ними. Подобное явление наблюдается до температуры, которая соответствует температурному оптимуму фермента. Температурный оптимум фермента соответствует той температуре, при которой скорость ферментативной реакции максимальна. Для ферментов теплокровных животных оно обычно составляет 28 о С или 37 о С.

Дальнейшее повышение температуры реакционной смеси приводит к постепенному понижению скорости ферментативной реакции. Это явление обусловлено процессом термоденатурации полипептидной цепи белка. Денатурация сопровождается изменением структуры активного центра фермента, следствием чего и становится понижение сродства фермента к суб-страту. При температуре выше 55 о С большинство ферментов полностью утрачивает каталитические свойства (инактивируется). В этой связи прогревание до 55–56 о С широко используется для процедуры пастеризации, которая повышает срок хранения пищевых продуктов (молока и др.).

Большое влияние на скорость ферментативной реакции оказывает рН среды. Как видно из представленного на рис. 31 графика, он напоминает по форме график зависимости скорости ферментативной реакции от температуры.

Рисунок 31 – Зависимость скорости (V ) ферментативной реакции

от рН среды (рН опт – рН оптимум фермента)

Резкое снижение скорости ферментативной реакции при экстремальных значениях рН связано с явлением денатурации полипептидной цепи белковой молекулы под действием кислот и щелочей. Фермент проявляет максимальную каталитическую мощность при величине рН, которая определяется термином рН-оптимум фермента. Большинство известных ферментов имеет оптимум рН в области от 5,0 до 7,5. Вместе с тем существует немало примеров ферментов, у которых величина рН-оптимума смещена в область кислых или щелочных значений рН. К таким ферментам относятся:

Причина существования зависимости скорости ферментативных реакций от рН связана с тем, что величина рН среды оказывает выраженное влияние на степень ионизации функциональных групп субстрата. Особенности ионизации молекулы янтарной кислоты при различной кислотности среды (рН):

Одновременно рН среды оказывает влияние и на степень ионизации аминокислотных радикалов, входящих в состав активного центра фермента:

Если образование фермент-субстратного комплекса стабилизируется за счет электростатических взаимодействий, то становится понятной роль рН в обеспечении оптимальных условий для течения ферментативной реакции (рис. 24).

Скорость реакций катализируемых ферментами, во взаимодействии которых с субстратами не имеют существенного значения электростали-ческие взаимодействия, в меньшей мере зависит от рН среды. На рис. 32 представлена зависимость скорости гидролиза белков папаином. Во взаимодействии этого фермента с субстратом основное значение приобретают гидрофобные взаимодействия. Как видно из представленного графика, у папаина вообще отсутствует четко выраженный рН-оптимум.

Рисунок 32 – Влияние рН на скорость гидролиза белка папаином.

Ферменты обладают определенной специфичностью в отношении субстратов. Под специфичностью подразумевается свойство ферментов катализировать превращение одного или группы сходных по строению субстратов. Существует несколько видов специфичности ферментов.

· Абсолютная специфичность. Под ней подразумевается способность фермента катализировать превращение только одного субстрата. К ферментам, обладающим абсолютной специфичностью, относятся аргиназа, уриказа рестриктазы и др.

· Относительная специфичность . Под ней подразумевается способность фермента катализировать превращение группы сходных по строению субстратов (т.н. протеолитические ферменты гидролизуют различные белки, липаза сложные эфиры глицерина и высших жирных кис-лот, гексокиназа фосфорилирует разные моносахариды). При этом специфичность определяется тем, что фермент оказывает влияние только на определенный тип связи (протеолитические ферменты гидролизуют пептидную связь, липаза гидролизует сложную эфирную связь и т.д.).

· Стереоспецифичность. Под этим термином подразумевается свойство фермента катализировать превращение одного стереоизомера субстрата. Так, ферменты, участвующие в превращении моносахаридов, проявляют специфичность по отношению к их D -стереоизомерам, а ферменты, участвующие в превращении аминокислот, – к их L -стерео-изомерам.

Активность ферментов

Особенностью ферментов как катализаторов является то, что они под действием разных внешних факторов способны изменять свои каталитические свойства. Мерой проявления силы каталитического действия ферментов является их активность . Способность ферментов менять свою активность в различных условиях имеет большой биологический смысл. Это свойство позволяет живой клетке приспосабливать состояние обменных процессов под сиюминутные потребности клеток, которые могут существенно изменяться под влиянием различных внешний факторов.

Определение активности ферментов играет важную роль их характеристике. Существуют некоторые общие принципы количественного определения активности ферментов. Активность ферментов можно определять так:

· либо по скорости накопления в реакционной смеси, где находится фермент продукта реакции;

· либо по скорости исчезновения из реакционной смеси субстрата ферментативной реакции.

Оба эти подхода равнозначны и могут быть использованы на практике. Однако при определении активности фермента необходимо соблюдать следующие условия: в реакционной смеси, в которой проводится определение активности фермента,

· температура должна соответствовать температурному оптимуму данного фермента;

· рН среды должна соответствовать рН-оптимуму данного фермента;

· концентрация субстрата должна быть не меньше насыщающей;

· должны присутствовать кофакторы, если таковые у этого фермента существуют;

· должны присутствовать активаторы фермента.

Таким образом, активность фермента определяется в оптимальных для него условиях. В этих условиях активность фермента пропорциональна его содержанию в исследуемом образце и поэтому может использоваться для косвенной оценки его концентрации.

Активность фермента количественно выражается в единицах активности . За одну единицу активности фермента (ЕД) принимается активность фермента, при которой под его влиянием происходит образование 1 мкмоль продукта реакции (или исчезновение 1 мкмоль суб-страта) в минуту . В системе СИ за единицу ферментативной активности принят катал (кат). 1 катал соответствует активности фермента, при которой происходит образование одного моля продукта реакции (исчезновение одного моля субстрата) за секунду.

Для характеристики ферментов используют также величину удельной активности. Эта единица отражает активность фермента в расчете на единицу его массы и выражается в мкмоль/мин мг белка. Единицы удельной активности используют для оценки чистоты ферментных препаратов. Чем выше величина удельной активности, тем чище ферментный препарат.